
© David G. Rathbun – www.dagira.com

Universe Design
Techniques Proven to

Boost Front-End
Performance

David G. Rathbun
Originally presented at BI2012 Conference

© David G. Rathbun – www.dagira.com

Abstract

• This session dives deep into universe development and examines
when, why, and how to tweak your existing Business Objects
universes for optimal report performance — and when you may
need to build new ones. Explore proven techniques for extending a
universe to ensure more efficient queries, an optimized end-user
experience, and more timely and efficient BI operations. Acquire tips
to perform index awareness, such as choosing a value from the list
of values (LOV) directly within the query panel, rather than using
prompts. Learn how to use aggregate awareness to set up complex
logic and step through a demo to see how this results in significantly
improved performance on the front end. Gain insight into whether
and when to leverage shortcut joins to boost query speed. Explore
universe design techniques that provide the best performance when
pointing to a data source outside your Business Objects system.
View detailed demonstrations of various advanced universe design
techniques and leave with proven strategies for incorporating them
into your own environment.

Page 2

© David G. Rathbun – www.dagira.com

About Dave

• Dedicated to BusinessObjects solutions since 1995

– Consultant and trainer for fifteen years

– Currently BI Solutions Architect for PepsiCo

– Note: Content is my own and does not reflect my employer

• 17 consecutive years presenting at major BI conferences

– United States, Europe, Australia

• Charter member of BOB

– http://busobj.forumtopics.com

• I Blog! Dave’s Adventures in Business Intelligence

– http://www.dagira.com

• SAP Mentor for 2009 – 2012

Page 3

© David G. Rathbun – www.dagira.com

Demonstration Platform

• Demonstration universes

– eFashion

– Island Resorts Marketing

• Software configuration

– SAP BusinessObjects Enterprise XI 3.1

– Oracle 10g

• Business Objects toolset

– Web Intelligence Rich Client

– Universe Designer

4

: Demonstration slides will be highlighted with this icon

Page 4

© David G. Rathbun – www.dagira.com 5

What We’ll Cover …

• Universe Concepts

• Index Awareness

• Shortcut Joins

• Aggregate Awareness

• Wrap-up

Page 5

© David G. Rathbun – www.dagira.com

What Is a Universe?

• The universe is the core of your Business Objects

installation

• Presents a semantic layer that translates database

structures into business terms

6 Page 6

© David G. Rathbun – www.dagira.com

Database Requirements

• None!

• A universe can be built on:

– Relational model

– Operational data store (ODS)

– Star schema

– Snowflake schema

– Cubes

• Some designs do have more issues than others

– Single-fact star schemas are probably the easiest …

– … but they’re still not immune from challenges

7 Page 7

© David G. Rathbun – www.dagira.com

What’s Important?

• Primary focus on universe design is to provide the

correct results

• Secondary concerns are:

– User-friendly

– Ease of maintenance

– Performance

• Today we will assume our universe is correct, and we will

discuss various techniques that can be used to improve

performance

8 Page 8

© David G. Rathbun – www.dagira.com 9

What We’ll Cover …

• Universe Concepts

• Index Awareness

• Shortcut Joins

• Aggregate Awareness

• Wrap-up

9 Page 9

© David G. Rathbun – www.dagira.com

What Is Index Awareness?

• What does the Universe Designer help say?

• That’s great, but what does it mean?

• How do I set it up?

• When does it work?

• When does it not work?

Object keys allow Universe Designer to generate more efficient

SQL by filtering on primary key values and eliminating

unnecessary joins.

10 Page 10

© David G. Rathbun – www.dagira.com

Setting Up Index Awareness

• Select an object and navigate to the Keys tab

• Key info is driven by the table relationships

• Repeat for each object from that table

11 Page 11

© David G. Rathbun – www.dagira.com

Using Multiple Keys

• Index aware can go in more than one direction

12 Page 12

© David G. Rathbun – www.dagira.com

What Does It Do For Me?

• Index awareness is not an “always

on” feature

– In some cases it works

– In others it does not

• When it works …

– Keys are defined

– User selects from the list of values

• When it does not work

– User types the value manually

– User responds to a prompt

13 Page 13

© David G. Rathbun – www.dagira.com

Efficient SQL

• When a user selects from an index aware list of values

…

14

: Demonstration 1 – Index aware queries

SELECT

 max(RESORT.resort),

 sum(INVOICE_LINE.DAYS * INVOICE_LINE.NB_GUESTS *

SERVICE.PRICE)

FROM RESORT, INVOICE_LINE, SERVICE, SERVICE_LINE

WHERE (RESORT.RESORT_ID=SERVICE_LINE.RESORT_ID)

 AND (SERVICE_LINE.SL_ID=SERVICE.SL_ID)

 AND (SERVICE.SERVICE_ID=INVOICE_LINE.SERVICE_ID)

 AND RESORT.RESORT_ID = 2

GROUP BY

 RESORT.RESORT_ID

Page 14

© David G. Rathbun – www.dagira.com

Even More Efficient SQL

• If the index aware object is not in the output set

• Query changes

– Condition moves to the foreign key

– Resort table is eliminated

15

: Demonstration 2 – Index aware query with no result dimension

SELECT

 sum(INVOICE_LINE.DAYS * INVOICE_LINE.NB_GUESTS *

SERVICE.PRICE)

FROM INVOICE_LINE, SERVICE, SERVICE_LINE

WHERE (SERVICE_LINE.SL_ID=SERVICE.SL_ID)

 AND (SERVICE.SERVICE_ID=INVOICE_LINE.SERVICE_ID)

 AND SERVICE_LINE.RESORT_ID = 2

Page 15

© David G. Rathbun – www.dagira.com

Fact-Only Queries Are Possible

• The query is extremely efficient …

• … but the report is not very useful

16

SELECT

 sum(SHOP_FACTS.Amount_sold)

FROM

 SHOP_FACTS

WHERE

 (SHOP_FACTS.WEEK_KEY = 233

 AND

 SHOP_FACTS.ARTICLE_CODE = 177264

 AND

 SHOP_FACTS.SHOP_CODE = 203)

: Demonstration 3 – Index aware fact table query

Page 16

© David G. Rathbun – www.dagira.com

Index Aware Limitations

• Keys are defined for individual objects rather than tables

– Object LOV is altered automatically

– That is why the LOV must be invoked

• Only unique values are candidates

– Snow-flaking may be required to fully leverage this feature

• Let’s review a simple case in Universe Designer

17

: Demonstration 4 – Universe Designer (covers the next several slides)

Page 17

© David G. Rathbun – www.dagira.com

Category Keys Defined

• The category object comes from the ARTICLE_LOOKUP

table

• Foreign key is in the SHOP_FACTS table

18 Page 18

© David G. Rathbun – www.dagira.com

LOV Updates Automatically

• LOV contains an invisible reference to the KEY column

• Key column is what drives index aware

19

SELECT DISTINCT

 ARTICLE_LOOKUP.CATEGORY,

 ARTICLE_LOOKUP.ARTICLE_CODE

FROM

 ARTICLE_LOOKUP

Page 19

© David G. Rathbun – www.dagira.com

Cannot Add “ALL” to the LOV

• Because the LOV contains

two columns

– One dimension value

– One invisible key value

• SQL cannot be generated

if “ALL” is added to the

LOV

20 Page 20

© David G. Rathbun – www.dagira.com

LOV Values Look Strange

• Article key is at a lower level

than category

• Category values duplicate

because of the addition of

this column

21 Page 21

© David G. Rathbun – www.dagira.com

Fixing the Category Object

• A snowflake dimensional model works better than a star

22 Page 22

© David G. Rathbun – www.dagira.com

Fixing the Category Object (cont.)

• More opportunities to define keys

• More opportunities for table elimination

• Process

– Create and populate the snowflake table (not via Universe

Designer)

– Include the table, add joins, update contexts

– Set up the keys and test the results

• Do not use a derived table as you won’t have a key

23

: Demonstration 5 – Universe Designer

Page 23

© David G. Rathbun – www.dagira.com

Specifying Primary Key on Designer

Prompts

• The primary_key option enables index awareness on

Designer prompts

– Prompt on key column

– List of values from related attribute

24

: Demonstration 6 – Prompts with index aware and primary_key

RESORT.RESORT_ID IN @Prompt('Please select

Resort','A','Resort\Resort',multi,primary_key)

Page 24

© David G. Rathbun – www.dagira.com

Things That Do Not Work

• Manual LOV selections are required

• Index awareness and aggregate awareness do not mix

– Aggregate aware objects can reference more than one table

– Index awareness requires a unique primary key definition

• May require snowflake tables

– Only unique element from a dimension table can be index aware

– Non-unique values will have improper LOV contents

25 Page 25

© David G. Rathbun – www.dagira.com

Is It Worth Setting Up?

• Yes, if you have a lot of ad hoc users

• Yes, if you are working with a normalized or snowflake

structure with lots of key opportunities

• Yes, if you have extra time during your implementation

• Probably not, if you have a star schema

– Not enough options to define key values

• No, if you want to include “ALL” as an option in your LOV

– Optional prompts address this

• No, if you use @Aggregate_Aware()

– In my opinion aggregate tables provide more benefit

26 Page 26

© David G. Rathbun – www.dagira.com

What Is Index Awareness?

• What does the Universe Designer help say?

• … but only when the user manually selects a value from

a list

• No aggregate tables

• No “ALL” option

• Limited to key (unique) dimensions

Object keys allow Universe Designer to generate more efficient

SQL by filtering on primary key values and eliminating

unnecessary joins.

27 Page 27

© David G. Rathbun – www.dagira.com 28

What We’ll Cover …

• Universe Concepts

• Index Awareness

• Shortcut Joins

• Aggregate Awareness

• Wrap-up

28 Page 28

© David G. Rathbun – www.dagira.com

What Are Shortcut Joins?

• What does the Universe Designer help say?

• This is the only purpose of a shortcut

• Do not use shortcuts to resolve loops

– Use the appropriate method (alias or context) instead

– Loops will not be discussed today

A shortcut join is a join that provides an alternative path between two

tables. Shortcut joins improve the performance of a query by not

taking into account intermediate tables, and so shortening a normally

longer join path.

29 Page 29

© David G. Rathbun – www.dagira.com

How Many Shortcuts Can I Take?

• Multiple shortcut joins can be used at the same time

• … but only in the right situation

• For example, consider these four tables:

• Shortcuts are applied only if they remove a table

• Shortcuts do not provide an alternate route, only a
shorter path

30 Page 30

© David G. Rathbun – www.dagira.com

Huh?

• Repeated from prior slide: Shortcuts do not provide an

alternate route, only a shorter path

• Consider a query with objects from table A, C, and D

• The only valid path is A – C – D, using shortcut A – C

• Why not A – D – C instead?

31 Page 31

© David G. Rathbun – www.dagira.com

Table Removal Algorithm

• Query includes objects from table A, C, and D

• Shortcut A – C is considered as it drops table B, which is

not needed

• Shortcut A – D is considered but cannot be used as it

drops table C, which is needed

• Therefore the only valid query path is A – C – D

• This avoids a “backwards” join, which could result in a

Cartesian product

32 Page 32

© David G. Rathbun – www.dagira.com

SHORTCUT_BEHAVIOR

• There is a parameter in universe parameters that

configures the shortcut process

– Successive = standard shortcut behavior

– Global = try to use every shortcut available

– Note: Universe Designer help (XI R2) says global is the default,

which does not appear to be the case

• When should you change this?

33 Page 33

© David G. Rathbun – www.dagira.com

Universe Parameter Setting

• You may have to add the setting if it does not already

exist

34 Page 34

© David G. Rathbun – www.dagira.com

SHORTCUT_BEHAVIOR Behavior

• Consider a modified version of eFashion

• Category, family (product line), region, state, and year
dimensions have been snow-flaked

• Shortcut joins exist between all snowflake tables and the
fact table

35 Page 35

© David G. Rathbun – www.dagira.com

SHORTCUT_BEHAVIOR “Successive”

36

: Demonstration 7 – Shortcut joins in a snowflake schema

SELECT

 max(REGION_LOOKUP.REGION_NAME),

 max(STATE_LOOKUP.STATE),

 sum(SHOP_FACTS.Amount_sold)

FROM

 REGION_LOOKUP,

 STATE_LOOKUP,

 SHOP_FACTS,

 OUTLET_LOOKUP

WHERE

 (OUTLET_LOOKUP.SHOP_CODE=SHOP_FACTS.SHOP_CODE)

 AND (STATE_LOOKUP.STATE_ID=OUTLET_LOOKUP.STATE_ID)

 AND (REGION_LOOKUP.REGION_ID=OUTLET_LOOKUP.REGION_ID

)

GROUP BY

 REGION_LOOKUP.REGION_ID, STATE_LOOKUP.STATE_ID

Page 36

© David G. Rathbun – www.dagira.com

SHORTCUT_BEHAVIOR “Global”

• Removing the OUTLET_LOOKUP table makes a more

efficient query in the snowflake universe

37

: Demonstration 7 (Repeat) – Shortcut joins in a snowflake schema

SELECT

 max(REGION_LOOKUP.REGION_NAME),

 max(STATE_LOOKUP.STATE),

 sum(SHOP_FACTS.Amount_sold)

FROM

 STATE_LOOKUP,

 SHOP_FACTS,

 REGION_LOOKUP

WHERE

 (STATE_LOOKUP.STATE_ID=SHOP_FACTS.STATE_ID)

 AND (REGION_LOOKUP.REGION_ID=SHOP_FACTS.REGION_ID)

GROUP BY

 REGION_LOOKUP.REGION_ID, STATE_LOOKUP.STATE_ID

Page 37

© David G. Rathbun – www.dagira.com

SHORTCUT_BEHAVIOR “Global”

(cont.)

• A global setting changes the shortcut algorithm

38 Page 38

© David G. Rathbun – www.dagira.com

SHORTCUT_BEHAVIOR “Global”

(cont.)

• Two potential shortcuts

– STATE_LOOKUP to SHOP_FACTS

– REGION_LOOKUP to SHOP_FACTS

• Either would drop the OUTLET_LOOKUP table

• Successive processes joins one at a time

– OUTLET_LOOKUP won’t be dropped because the “other” join

requires that table

• Global processes all at once and recognizes that it can

drop the table

39 Page 39

© David G. Rathbun – www.dagira.com

Shortcut Joins + Index Awareness

• The SQL on the prior page showed this

• This is because index keys have been set up in the

snowflake universe

• How does index aware interact with shortcut joins?

40

max(REGION_LOOKUP.REGION_NAME)

: Demonstration 8 – Shortcut joins and index aware objects

Page 40

© David G. Rathbun – www.dagira.com

SQL Shortcuts All the Way Around

• Shortcut joins are used

• Index keys are used

41

SELECT

 max(REGION_LOOKUP.REGION_NAME),

 max(YEAR_LOOKUP.YEAR),

 sum(SHOP_FACTS.Amount_sold)

FROM REGION_LOOKUP, SHOP_FACTS, YEAR_LOOKUP

WHERE

 (REGION_LOOKUP.REGION_ID=SHOP_FACTS.REGION_ID)

 AND (SHOP_FACTS.YEAR_ID=YEAR_LOOKUP.YEAR_ID)

 AND (REGION_LOOKUP.REGION_ID = 2

 AND YEAR_LOOKUP.YEAR_ID = 3)

GROUP BY

 REGION_LOOKUP.REGION_ID,

 YEAR_LOOKUP.YEAR_ID

Page 41

© David G. Rathbun – www.dagira.com

Shortcuts, Indexes, and Global

Parameters, Oh My!

• The last example did not require global shortcut behavior

• What happens when index aware objects are used in

combination with global shortcut paths?

• This query uses region name and state

– Both reference the OUTLET_LOOKUP table for index keys

– Both have shortcuts to the SHOP_FACTS table

42

: Demonstration 9 – Shortcut joins, index aware objects, and global algorithm

Page 42

© David G. Rathbun – www.dagira.com

SQL Shortcuts All the Way Around

• Shortcut joins are used

• Index keys are used

43

SELECT

 max(REGION_LOOKUP.REGION_NAME),

 max(STATE_LOOKUP.STATE),

 sum(SHOP_FACTS.Amount_sold)

FROM STATE_LOOKUP, SHOP_FACTS, REGION_LOOKUP

WHERE

 (STATE_LOOKUP.STATE_ID=SHOP_FACTS.STATE_ID)

 AND

(REGION_LOOKUP.REGION_ID=SHOP_FACTS.REGION_ID)

 AND (REGION_LOOKUP.REGION_ID = 2

 AND STATE_LOOKUP.STATE_ID = 1)

GROUP BY REGION_LOOKUP.REGION_ID,

 STATE_LOOKUP.STATE_ID

Page 43

© David G. Rathbun – www.dagira.com

What Are Shortcut Joins?

• What does the Universe Designer help say?

• Shortcuts are used to eliminate tables, not provide

alternate paths

• There are two different behaviors for the shortcut

algorithm; use the one that fits your needs

44

A shortcut join is a join that provides an alternative path between two

tables. Shortcut joins improve the performance of a query by not

taking into account intermediate tables, and so shortening a normally

longer join path.

Page 44

© David G. Rathbun – www.dagira.com 45

What We’ll Cover …

• Universe Concepts

• Index Awareness

• Shortcut Joins

• Aggregate Awareness

• Wrap-up

45 Page 45

© David G. Rathbun – www.dagira.com

What Is Aggregate Awareness?

• What does the Universe Designer help say?

• Aggregate awareness lets a universe designer take

advantage of summary tables

– The process of building and populating these tables is beyond the

scope of this session

Aggregate awareness is the ability of a universe to make use of

aggregate tables in a database. These are tables that contain pre-

calculated data. You can use the @Aggregate_Aware function in the

Select statement for an object that directs a query to be run against

aggregate tables rather than a table containing non aggregated data.

Using aggregate tables speeds up the execution of queries,

improving the performance of SQL transactions.

46 Page 46

© David G. Rathbun – www.dagira.com

Aggregate Awareness Implementation

• Aggregate awareness requires the following steps:

– Creating/populating aggregate structures in the database

– Referencing those aggregate tables in the universe

– Setting up rules so the query tools know which aggregate sources

are available

• Side note: Many databases offer alternative solutions

– Teradata offers Aggregate Join Indexes or AJIs

– Oracle offers Materialized Views

– DB2 offers MQTs or Materialized Query Tables

• These solutions do not require any effort by the universe

designer

47 Page 47

© David G. Rathbun – www.dagira.com

Adding Aggregate Structures

• Adding aggregate tables is done like any other table

• In this case the aggregate table stands alone with no joins

48 Page 48

© David G. Rathbun – www.dagira.com

Designing Aggregate Structures

• Look for a reduction of 10:1 or more
– Goal is to provide noticeable performance impact with minimal

ETL effort

• What to remove?
– Look at standard queries that users run

– Time makes a great aggregate option

– Geography is another typical candidate

49 Page 49

© David G. Rathbun – www.dagira.com

Creating Objects

• Aggregate tables can contain dimensions or measures

– Most typically objects are measures

– Dimension objects can also be aggregate aware

• Syntax

• I have worked with universes with over 20 levels of

aggregate tables

@Aggregate_Aware(

 Sum(top_level_table.measure)

,Sum(second_level_table.measure)

,…

,Sum(lowest_level_table.measure)

)

50 Page 50

© David G. Rathbun – www.dagira.com

Aggregate Aware Syntax

• Aggregate aware objects are about choices

– Where is the best place to get the information needed?

– Start with the smallest table and move to the largest

: Demonstration 10 – Adding aggregate table, building aggregate objects

51 Page 51

© David G. Rathbun – www.dagira.com

Navigating Aggregate Sources

• Aggregate tables do not have the same level of detail

– Which objects work with the aggregate table? Which do not?

• Answer this question using Tools + Aggregate Navigation

– Select the aggregate table

– Mark which objects are incompatible with that table

– Objects are incompatible with a table, not with other objects!

: Demonstration 11 – Setting up aggregate navigation

52 Page 52

© David G. Rathbun – www.dagira.com

Aggregate Table Definition

• Aggregate table

includes Year,

Quarter, State, Line,

and Category

– Therefore those objects

are compatible

– All other objects cannot

be used with the

aggregate source

53 Page 53

© David G. Rathbun – www.dagira.com

Aggregate Navigation In Action

• Year

• State

• Revenue

@Aggregate_Aware(AGG_YR_QT_RN_ST_LN_CA_SR.YEAR

,YEAR_LOOKUP.YEAR)

@Aggregate_Aware(AGG_YR_QT_RN_ST_LN_CA_SR.STATE

,STATE_LOOKUP.STATE)

@Aggregate_Aware(

sum(AGG_YR_QT_RN_ST_LN_CA_SR.SALES_REVENUE)

,sum(SHOP_FACTS.Amount_sold))

: Demonstration 12 – Running Aggregate Aware queries

54 Page 54

© David G. Rathbun – www.dagira.com

What Is Aggregate Awareness?

• What does the Designer help say?

• Process

– Set up objects, build incompatibility rules, run queries

– Aggregate tables are used when available, skipped when not

– Queries that use summary tables run faster

Aggregate awareness is the ability of a universe to make use of

aggregate tables in a database. These are tables that contain pre-

calculated data. You can use the @Aggregate_Aware function in the

Select statement for an object that directs a query to be run against

aggregate tables rather than a table containing non aggregated data.

Using aggregate tables speeds up the execution of queries,

improving the performance of SQL transactions.

55 Page 55

© David G. Rathbun – www.dagira.com 56

What We’ll Cover …

• Universe Concepts

• Index Awareness

• Shortcut Joins

• Aggregate Awareness

• Wrap-up

56 Page 56

© David G. Rathbun – www.dagira.com

Additional Resources

• Many of the techniques addressed today have been

covered in blog posts on my business intelligence blog

– www.dagira.com

• What is Index Awareness?

– www.dagira.com/2007/10/26/index-awareness-part-i-the-basics

• Everything about Shortcut Joins

– www.dagira.com/2010/05/27/everything-about-shortcut-joins

• There are several online communities that also offer help

– BOB at http://busobj.forumtopics.com

– SAP at http://forums.sdn.sap.com/index.jspa

57 Page 57

© David G. Rathbun – www.dagira.com 58

7 Key Points to Take Home

• Universe performance is a secondary concern

• Make sure structure delivers correct results first!

• Index awareness can optimize queries by using keys

• Shortcut joins can bypass unnecessary tables

• Shortcut joins are NOT used to resolve loops

• Aggregate awareness allows a universe to use summary

tables

• Aggregate awareness is not compatible with index

awareness

Page 58

© David G. Rathbun – www.dagira.com 59

Disclaimer

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks

or registered trademarks of SAP AG in Germany and in several other countries all over the world. All other

product and service names mentioned are the trademarks of their respective companies. Wellesley Information

Services is neither owned nor controlled by SAP.

Any opinions, comments, statements, or technical details provided in this presentation are my own personal

opinions and may or may not reflect the opinions or policies of my employer or clients.

Page 59

